HALL TICKET NUMBER

PACE INSTITUTE OF TECHNOLOGY & SCIENCES::ONGOLE (AUTONOMOUS) II B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, JAN - 2023 Mathematical Foundation of Computer Science

(Common to IT, AIML Branches)

Time: 3 hours

Max. Marks: 60

Note: Question Paper consists of Two parts (Part-A and Part-B) <u>PART-A</u>

Answer all the questions in Part-A (5X2=10M)

Q.No.		Questions	Marks	CO	KL
1	a)	Explain contra positive with example.	[2M]	1	
	b)	Define transitive closure.	[2M]	2	
	c)	Give any two examples for a Monoid.	[2M]	3	
	d)	Define probability for any event with an example.	[2M]	4	
	e)	Explain planar graphs with examples?	[2M]	5	

PART-B

Answer One Question from each UNIT (5X10=50M)

Q.]	No.	Questions	Marks	CO	KL
		UNIT-I			
2.	a)	Prove the following logical equivalence without using truth table. $(p \rightarrow q) [lq (r lq)] \leq > l(q p).$	[5M]	1	
	b)	[5M]	1		
		OR			1
3.	a)	Explain in detail about the Logical Connectives with Examples?	[5M]	1	
	b)	Show that the following premises are inconsistent $P \rightarrow Q$, $P \rightarrow R$, $Q \rightarrow \neg R$, P	[5M]	1	
		UNIT-II			
4.	a)	Explain different types of functions with suitable example?	[5M]	2	
	b)	Let the Relation R be $R=\{(1,2),(2,3),(3,3)\}$ on the set $A=\{1,2,3\}$. What is the Transitive Closure of R?	[5M]	2	
		OR			
5.	a)	Define Relation? List out the Properties of Binary operations? Explain properties of binary relations with examples.	[5M]	2	
	b)	Draw the Hasse diagram of $(P(S),\leq)$, where $P(S)$ is power set of the set $S = \{a,b,c\}$.	[5M]	2	
		UNIT-III			L
6.	a)	In how ways can the letters of the word 'ORANGE' be arranged so that the consonants occupy only the even positions?	[5M]	3	
	b)	What is the coefficient of $x^3 y^7$ in $(x+y)^{10}$?	[5M]	3	
		OR	- -		
7.	a)	How many ways are there to seat 10 boys and 10 girls around a circular table, if boys and girls seat alternatively.	[5M]	3	
	b)	Find n if i) $P(n,2)=72$ ii) $P(n,4)=42p(n,2)$ iii $)2P(n,2)+50=p(2n,2)$.	[5M]	3	
	1	UNIT-IV			L

8.		For the	disci	rete pr	obabil	ity dis	tributi	on			[10M]	4	
		X	0	1	2	3	4	5	6	7			
		f(x)	0	K	2k	2k	3k	K ²	2k ²	7k ² +k			
		Determ	nine (1) K (i	ii) Mea	an (iii)	Varia	ince					
								C)R				
9.	a)	Solve t	he re	curren	ce rela	tion a	n - 8 an	$_{1-1} + 21$	a _{n-2} -	18 $a_{n-3} = 0$ for $n \ge 3$ using	[5M]	4	
		generat	ting f	unctio	ns?								
	b)	Find G	enera	ting fi	unction	n ofa ⁿ '	?				[5M]	4	
								UN	IT-V		1		
10.	a)	Prove t	hat a	conne	cted g	raph is	s a tree	e if an	d only	if it is minimally	[5M]	5	
		connec	ted.										
	b)	Explair	n Brea	adth F	irst Se	arch w	ith su	itable	examp	ple?	[5M]	5	
								C)R				
11.	a)	Explair	n Kru	skals a	algorit	hm wi	th an e	examp	le		[5M]	5	
	b)	Show t	hat e	very g	raph w	rith for	ır or f	ewer v	vertice	s is planar.	[5M]	5	
L		1					:	*****	*		I		

R18

