HALL TICKET NUMBER

PACE INSTITUTE OF TECHNOLOGY \& SCIENCES::ONGOLE (AUTONOMOUS)

II B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, JAN - 2023
Mathematical Foundation of Computer Science
(Common to IT, AIML Branches)
Time: 3 hours
Max. Marks: 60
Note: Question Paper consists of Two parts (Part-A and Part-B)
PART-A
Answer all the questions in Part-A $(5 \mathrm{X} 2=10 \mathrm{M})$

Q.No.		Questions	Marks	CO	KL
1	a)	Explain contra positive with example.	$[2 \mathrm{M}]$	1	
	b)	Define transitive closure.	$[2 \mathrm{M}]$	2	
	c)	Give any two examples for a Monoid.	$[2 \mathrm{M}]$	3	
	d)	Define probability for any event with an example.	$[2 \mathrm{M}]$	4	
	e)	Explain planar graphs with examples?	$[2 \mathrm{M}]$	5	

PART-B
Answer One Question from each UNIT (5X10=50M)

Q.No.		Questions	Marks	CO	KL
UNIT-I					
2.	a)	Prove the following logical equivalence without using truth table. $(\mathrm{p} \rightarrow \mathrm{q})[\mathrm{lq}(\mathrm{r} \mathrm{lq})]<\Rightarrow\rceil(\mathrm{q} \mathrm{p})$.	[5M]	1	
	b)	Show that $\mathrm{P} \rightarrow \mathrm{S}$ tautologically implied by $\neg \mathrm{P} \vee \mathrm{Q}, \neg \mathrm{Q} \vee \mathrm{R}, \mathrm{R} \rightarrow \mathrm{S}$ by automatic theorem proving.	[5M]	1	
OR					
3.	a)	Explain in detail about the Logical Connectives with Examples?	[5M]	1	
	b)	Show that the following premises are inconsistent $\mathrm{P} \rightarrow \mathrm{Q}, \mathrm{P} \rightarrow \mathrm{R}, \mathrm{Q} \rightarrow \neg \mathrm{R}, \mathrm{P}$	[5M]	1	
UNIT-II					
4.	a)	Explain different types of functions with suitable example?	[5M]	2	
	b)	Let the Relation R be $\mathrm{R}=\{(1,2),(2,3),(3,3)\}$ on the set $\mathrm{A}=\{1,2,3\}$. What is the Transitive Closure of R ?	[5M]	2	
OR					
5.	a)	Define Relation? List out the Properties of Binary operations? Explain properties of binary relations with examples.	[5M]	2	
	b)	Draw the Hasse diagram of $(\mathrm{P}(\mathrm{S}), \leq)$, where $\mathrm{P}(\mathrm{S})$ is power set of the set $\mathrm{S}=$ $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$.	[5M]	2	
UNIT-III					
6.	a)	In how ways can the letters of the word 'ORANGE' be arranged so that the consonants occupy only the even positions?	[5M]	3	
	b)	What is the coefficient of $\mathrm{x}^{3} \mathrm{y}^{7}$ in $(\mathrm{x}+\mathrm{y})^{10}$?	[5M]	3	
OR					
7.	a)	How many ways are there to seat 10 boys and 10 girls around a circular table, if boys and girls seat alternatively.	[5M]	3	
	b)	Find n if i) $\mathrm{P}(\mathrm{n}, 2)=72 \mathrm{ii}) \mathrm{P}(\mathrm{n}, 4)=42 \mathrm{p}(\mathrm{n}, 2)$ iii $) 2 \mathrm{P}(\mathrm{n}, 2)+50=\mathrm{p}(2 \mathrm{n}, 2)$.	[5M]	3	
UNIT-IV					

